
24 CROSSTALK The Journal of Defense Software Engineering September 2005

The Personal Software ProcessSM (PSPSM)
is a software development process orig-

inated by Watts Humphrey at the Software
Engineering Institute (SEI) in the early to
mid-1990s. By design, it is a high-maturity
development process with all the features
required to support a single developer. PSP
is a measurement-driven process that
includes planning, estimating, design, per-
sonal reviews, and testing. Its basic concepts
can be extended for all software develop-
ment life-cycle phases.

The Team Software ProcessSM (TSPSM)
was developed in the late 1990s to add team-
level practices to the PSP. By so doing, the
TSP makes the PSP suitable for use in a
commercial software development environ-
ment. TSP begins with a facilitated project
launch process that generates a detailed proj-
ect plan. The project plan includes a devel-
opment strategy, a tailored development
process, detailed size and effort estimates,
earned value (EV) plans, a schedule, a quali-
ty management plan, and a risk management
plan. The launch process is a team-building
exercise designed to foster a sense of own-
ership and commitment and to produce a
high-performance work team. The TSP con-
tinues to support project execution activities
via a structured weekly project status meet-
ing and all the management practices neces-
sary to run a full-scale development project.

The PSP for Engineers course is taught
in the context of new development where
the students are asked to complete a series of
10 programming assignments. As a result,
there is a perception that PSP and TSP will
only work for new development projects. In
this article, we will demonstrate how PSP
and TSP were adapted to successfully plan
and manage a maintenance project.

The Team
The Maintenance Team Dilemma
Maintenance projects deal with post-devel-
opment support. In general, this can include
operational support and implementation of

new or enhanced features as well as defect
investigations and fixes. Some maintenance
projects just involve working off a backlog
of problem reports and change requests.
These projects are relatively easy to handle in
a conventional TSP launch. Although it may
be necessary to modify the estimation algo-
rithm because there is not a good correlation
between effort and the size of the change,
there is a known list of tasks (the back-
logged problem reports and change
requests) that can provide the basic input to
the TSP planning process.

The situation gets more complicated
when near real-time operational support is
added to the mix of project tasks. The
majority of project tasks may be unknown at
the time of the launch because the opera-
tional anomalies have not even taken place
yet. Nonetheless, the organization needs to
allocate adequate resources, commit to
scheduled completion dates for backlogged
tasks, and manage the overall effort.

Organizations often have difficulty plan-
ning, staffing, and managing these sorts of
maintenance projects due to the unpre-
dictability of both the rate at which opera-
tional anomalies are reported and the effort
required to respond to anomaly reports.
There is frequently no correlation between

the length of an anomaly investigation and
the size of the resulting change. In fact,
many anomaly reports do not even result in
a change.

As a result, team members frequently
feel that any attempt to estimate and plan the
effort for a maintenance project is futile.
And yet, these projects need to be staffed
and managed.

This article shows how PSP and TSP
were successfully used to plan and manage a
maintenance project and how the team was
able to build a useful estimating scheme in a
project environment where it was common
for developers to spend 75 percent of their
time on unplanned event-driven anomaly
investigations.

The Project
The project involved maintaining a large net-
work-based financial services package origi-
nally implemented in C. The package was
key to the company’s revenue stream and
required real-time operational support as
well as fixes and enhancements.

The maintenance team was composed of
12 PSP-trained software developers. Half
the maintenance team was located at a site in
the United States, while the remaining half
was located at a site in Europe. There was a
team lead at each location. The project man-
ager worked in the United States. The TSP
launch was held in the team’s U.S. office.

Is It a Team?
Typical work for this group of developers
includes investigating reports of operational
anomalies, upgrading legacy software to sup-
port new requirements, adding new features,
investigating defects, and fixing defects. In
the past, each developer considered himself
or herself responsible for a different prod-
uct. As it turned out, they were each respon-
sible for a component of a single product.
Each product component was built and
released separately. There were no task or
schedule dependencies between developers.
Defects were generally localized to a com-
ponent of the product. Up to this point,
individuals only needed to be focused on

Applying Functional TSP to a Maintenance Project

Ellen George and Dr. Steve Janiszewski
PS&J Software Six Sigma

Personal Software ProcessSM (PSPSM) is taught in the context of new code development and implementation. We frequently
hear developers say that it will only work for new development and that their maintenance project is different. This article dis-
pels that myth, demonstrating how PSP and Team Software ProcessSM (TSPSM) were successfully adapted to plan and man-
age a maintenance project. Readers will learn the key success factors in forming a functional project team and will learn how
to emphasize and de-emphasize portions of the TSP process to better address the needs of a maintenance project.

“When preparing to
launch a TSP team, it is a
good practice to start by
identifying a successful
end state.What would
management, the team,
and the coach consider

to be a successful launch
and project?”

SM TSP and PSP are service marks of Carnegie Mellon
University.

September 2005 www.stsc.hill.af.mil 25

their own component.
This contrasts strongly with the situation

in new development where there are usually
obvious dependencies in each person’s work
on tasks being done by other team members
as the team works together to produce a
product.

Watts Humphrey defines the functional
team as a team with the following:

… has a functional, rather than a
product, mission. While all the mem-
bers may do similar work, they do
not develop a single product and
their individual tasks are usually quite
independent. … [An] example would
be a maintenance group where each
member handles the repair and
enhancement of a product. While
several of the members might occa-
sionally work on elements to be inte-
grated into a common release, they
would usually work alone. [1]

The developers on this project fit the
definition of a functional team perfectly.
Consequently, the decision was made to
launch the team using the SEI’s variant of
the TSP launch process for functional teams,
TSPf 1.

Preparation
When preparing to launch a TSP team, it is
a good practice to start by identifying a suc-
cessful end state. What would management,
the team, and the coach consider to be a suc-
cessful launch and project? Answering these
questions requires having well-defined
launch and project goals and a strategy for
attaining those goals.

Questions
What were the project goals? Why was this
group of individual developers being
launched as a team? What did the organi-
zation or the project manager think they
would be able to accomplish as a team that
they would not be able to accomplish as
individuals?

We drilled down on these questions in a
series of launch planning meetings with the
project manager. Ultimately, the project
manager was able to clearly articulate three
very specific objectives that provided a com-
pelling reason for these individuals to work
together as a team:
• Spread knowledge among the team and

broaden experience to reduce areas of
risk and increase efficiency.

• Improve real and perceived quality to
reduce customer-generated interrup-
tions.

• Increase ratio of planned tasks to reac-
tive unplanned activities.

If they were able to accomplish these
objectives, it would benefit not only the
organization, but the team members as well.

Once we had a well-defined set of man-
agement objectives for the team, the next set
of questions addressed the actual TSP
launch. What were some ways that the team
could plan for the unplanned, high priority
interruptions that are characteristic of near
real-time operational support? What might
they use as a size metric? Was there a con-
ceptual design? What does quality mean
when they are modifying a small number of
lines relative to the size of the base code?

The coach’s goal is not to decide the
answers to these questions for the team, but
rather to consider some of the possible
answers and to make sure that the team col-
lected the right project data prior to the
launch so they would be able to make deci-
sions based on data during the launch.

Through this exercise of strategizing
an approach for conducting the launch, it
became apparent that there were two
overriding themes: commonality and
repeatability.

Preparing the Project Manager
Commonality was the theme that would help
the individuals to gel as a team. If they
found that they had enough in common
with one another and that they could bene-
fit by taking advantage of the synergy, then
surely they would come together as a team.

It was the program manager’s job to
define the management goals that would
help set the stage for the team to gel. These
goals had to serve two functions: setting a
long-term vision for the project and the
organization while providing short-term tar-
gets to help the team focus and come
together.

We decided that the best approach
would be to identify a long-term vision to
provide a frame of reference. To support the
vision, a series of short-term goals were
developed. The team would be given three
to four short-term goals with the expecta-
tion that they would be able to achieve them
within about a month. The first set of short-
term goals was selected so that they would
be achievable with relatively low risk.

Since maintenance work can be difficult
to predict and plan, we decided that the team
would have a mini re-launch every four to
six weeks. Each of these re-launches would
provide the program manager an opportuni-
ty to roll out the next set of goals on the
path to achieving his overall vision.

Preparing the Team Members
A necessary ingredient to this team’s success
was to get the team members to believe that
there was a considerable amount of repeata-

bility in their work and that this repeatability
would lead to an improved ability to esti-
mate. We asked the team members to start
gathering PSP data on their tasks several
weeks prior to the launch in an attempt to
find the repeatability in their daily or weekly
activities.

We found that the developers had two
distinct categories of tasks. The first cate-
gory was high priority interruptions.
These interrupts could occur at any time.
When they did, all other work had to be
put aside. The second category of task
was background work, which consisted of
the tasks that the developers worked on
when they were not reacting to high prior-
ity interruptions.

It was obvious that the developers
would not be able to anticipate what inter-
ruptions would occur. However, it seemed
that there might be a pattern to the quan-
tity of high priority interrupt effort that
was spent within a period of time. If the
developers could quantify the percentage
of time each week that was spent handling
the high priority interrupts, then they
would be able to create a budget of task
hours for this category of activity.

The developers were asked to flag each
task they worked on as one that they either
knew about at the beginning of the week or
one that came in during the week as an
interrupt. While the percentage by category
differed by individual, we found that there
was clearly repeatability for each individual
from week to week. The developers were
able to use the data they collected during
launch meeting No. 4 to plan for time to be
spent on planned tasks as well as to create a
budget for time to be spent on unplanned
tasks. The planned tasks would then be esti-
mated and planned just like any other PSP
task. Whenever an interrupt came in, the
developer would estimate it and plan it.
Time for the interrupt would be allocated
from the budget for unplanned tasks.

The Launch
A TSP launch consists of a series of script-
ed meetings. We tailored the standard TSPf
meeting scripts by employing some special
techniques designed to contribute to the
success of the team by reinforcing the
themes of commonality and repeatability.

Tailoring – Management and
Team Goals
For each goal, we asked the team why it was
important to them and what the impact to
the team would be if they missed it. They
were being asked to justify the need for each
goal. In doing so, they began to internalize
the importance of the goals, converging on
a common understanding of what the goals

Applying Functional TSP to a Maintenance Project

Software Engineering Technology

really meant. The team decided to break
down their goals into prioritized tasks to be
interleaved with their product tasks.

Tailoring – Conceptual Design
The team did not think of themselves as
part of a bigger project so they were initial-
ly hesitant to spend time reviewing the con-
ceptual design

We asked the design manager to project
a system diagram on a screen and lead a dis-
cussion in which the person most knowledgeable
with each component of the system briefed
the others on the size of the component,
interactions with other components of the
system, and areas of risk.

This was the first time that the team
members ever had the opportunity to see

their own work on individual package com-
ponents in an overall system context. The
discussion became animated and the team
members became physically involved 2. In spite
of their initial reticence, this was the meeting
where individuals started to come together
as a team.

Tailoring – Process Plan
The organizational maintenance process had
been defined prior to the launch. So, the
team focused its discussion on defining
explicit entry criteria, exit criteria, and
required approvals for moving from one
process step to the next. The team was able
to identify gaps in the defined process and to
recommend modifications to address the
gaps. The resulting maintenance process was
relatively simple and is shown in Table 1.

The source of the problem could be a
reported anomaly, a defect report, or a
request of new functionality. Anomaly
reports do not necessarily require product
changes to be resolved. They could be oper-
ator errors, procedural issues, etc. The scope
of the solution analysis depends on the size
of the required change, and it could be omit-
ted for a trivial change. Conformance testing
verifies that the software will work in the
exchange environment. It requires test
scripts recorded from exchange feeds.
Multiple changes are aggregated into a sys-
tem build and released to production.

Tailoring – Top Level Plan
The team used the data they had collected
over the past several weeks and analyzed the
average number of task hours per week that
they had each spent on planned versus
unplanned tasks. Using this data, they were
able to confidently plan for how many hours

they could get on task each week, budgeting
a percentage of those hours for unplanned
or interrupt-driven tasks.

For many of the team members, approx-
imately 75 percent of their task hours were
being spent on interrupt-driven tasks. So,
those team members who were achieving a
total of 12 hours on task per week planned
to spend three hours per week on back-
ground tasks and budgeted nine hours a
week for interrupt-driven tasks.

Tailoring – Quality Plan
The team spent considerable time discussing
what quality meant to their customer. A pre-
dominant concern was defects that were
returned to the team by the customer after
an initial fix. The team put metrics in place
to explicitly track and manage the following:
• Quantity and frequency of returned

fixes.
• Defect investigation time.
• Defect turnaround time.

Tailoring – Detailed Plan
One of the goals of this launch was to
build a plan in which the team would close
out all of their high priority tasks. The
background tasks were sequenced so that
the high-priority tasks would be completed
first. Multiple EV plans were generated so
that management would have visibility into
the following:
• How long it would take to complete

the high priority tasks given the level
of interrupts that the team was experi-
encing.

• How much backlog work the team
would complete in six weeks.

• How long it would take to work off
the full backlog of tasks.

This was easily accomplished with the
help of an automated scheduling tool.

Post-Mortem
The participants felt that “team synergy was
improved,” that they did a “good job of bal-
ancing work load,” and that there was
“exposure of everyone else’s jobs” with
“good participation and contribution from
everyone.” One participant summarized the
experience: “This seems like the birthday of
this team.”

Results
Estimating
During the launch, the team was highly
skeptical about their ability to estimate
anomaly investigation tasks. However, they
agreed to make their best estimates and then
to develop an estimating algorithm from the
post-launch data. Without historical data,
the team estimating error was 41 percent.
With the data gathered during the launch

26 CROSSTALK The Journal of Defense Software Engineering September 2005

0

10

20

30

40

50

60

70

80

90

3 111 218 325 433 540 647

Duration Bin (Minutes)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 1: Anomaly Investigation Effort Histogram

Actual Time Est. Time (Launch) Est. Time (S/M/L)

Minutes 2,549 4,301 3,313

% Error - 41% - 23%

F
re

q
u

e
n

c
y

Histogram

Figure 1: Anomaly Investigation Effort
Histogram

Entry Criteria Exit Criteria

• Anomaly report, defect report, or
improvement request with
assigned due date and priority.

• Root cause identified and documented.

 Anomaly report closed or reassigned.

 Additional defect reports or improvement
requests opened as necessary.

 Solution investigation assigned if
needed.

• Defect report or improvement
request with assigned due date
and priority.

 Authorized solution.

• Defect report or improvement
request with assigned due date
and priority.

 Authorized solution (optional).

 Problem fixed.

 • Defect report or improvement request
has test pending status.

st • Test request opened.

 • Test scripts are received from
exchange.

 Test completed.

 • Filled scripts sent to exchange or test
cancelled.

 • Test results published.

• System build request opened.

 • All defect reports and
improvement requests are cross-
referenced to the build request
and have test past status.

• All code changes in the build are
traceable to a cross-referenced
defect report or improvement
request.

 • Working system with required
documentation.

nce Process

Duration (minutes)

Very Small 6

Small 18

Medium 59

Large 187

Very Large 596

Estimation Table

 •

 •

 •

 •
 •

 •

 •

Table 2: Anomaly Estimation Table

Activity Entry Criteria Exit Criteria

Problem
Investigation

• Anomaly report, defect report, or
improvement request with
assigned due date and priority.

• Root cause identified and documented.

 Anomaly report closed or reassigned.

 Additional defect reports or improvement
requests opened as necessary.

 Solution investigation assigned if
needed.

Solution
Investigation

• Defect report or improvement
request with assigned due date
and priority.

 Authorized solution.

Problem Fix • Defect report or improvement
request with assigned due date
and priority.

 Authorized solution (optional).

 Problem fixed.

 • Defect report or improvement request
has test pending status.

Conformance Test • Test request opened.

 • Test scripts are received from
exchange.

 Test completed.

 • Filled scripts sent to exchange or test
cancelled.

 • Test results published.

System Build • System build request opened.

 • All defect reports and
improvement requests are cross-
referenced to the build request
and have test past status.

• All code changes in the build are
traceable to a cross-referenced
defect report or improvement
request.

 • Working system with required
documentation.

Table 1: Maintenance Process

Duration (minutes)

Very Small 6

Small 18

Medium 59

Large 187

Very Large 596

Table 2: Anomaly Estimation Table

 •

•

•

•
•

•

•

Table 1: Maintenance Process

Applying Functional TSP to a Maintenance Project

September 2005 www.stsc.hill.af.mil 27

post-mortem, the team was able to reduce
the estimating error to 23 percent.

Anomaly Investigation Effort
After the launch, the team collected data
on the durations of anomaly investigation
tasks for several months. A histogram3 of
the data, as shown in Figure 1, indicates
that the duration of anomaly investigation
tasks can be modeled as a random variable
and that a skewed-distribution function,
like a log normal, would provide a good
basis for estimating the probable duration
of an anomaly investigation task.

From the fitted distribution function, it
is possible to determine what the expected
duration of a very small, small, medium,
large, and very large task would be, as
shown in Table 2. The average length of an
investigation task was 59 minutes, with
approximately 70 percent of all investiga-
tions requiring between 18 and 187 minutes.

Estimating Algorithm
This result leads directly to a simple tech-
nique for estimating anomaly investigations
that can be employed during a TSP launch.
For the tasks that are part of the backlog
for a special anomaly investigation, catego-
rize each one as very small, small, medium,
large, or very large and use the estimated
time provided by the table. Prorate the total
for all backlogged tasks to account for the
unplanned investigations by using the his-
torical percentage of time devoted to
unplanned anomaly investigations. For this
team, the percentage of time devoted to
unplanned anomaly investigations was 75
percent to 85 percent of its available time.

Re-Estimating the Launch
During the launch, the team had estimat-
ed the effort of each identified investiga-
tion as small, medium, or large. Assess-
ment of effort had been made by the task
owner, based on familiarity with the func-
tionality and amount of code that would
need to be reviewed.

During post-mortem, the original
small/medium/large estimate from the
launch was used along with the calculated
values of small, medium, and large to re-
estimate the tasks. As shown in Table 3, the
re-estimate based on the calculated size
ranges reduced the estimation error by a
factor of two to a total error of 23 percent.

Lessons Learned
The coach must prepare for every launch.
The coach needs to understand the pecu-
liarities of each team, anticipate potential
trouble spots relative to planning, and
have a strategy for how to facilitate the
launch to engage the participants and to

build a plan that supports the business
objectives. Choose no more than three to
four very specific and achievable goals to
help unite the participants as a team. Use
PSP 1.0 to collect data prior to the launch,
and focus the team on actual data to help
team members find the repeatability in
their work and to make fact-based deci-
sions during the launch.

Even though an individual task may be
completely unpredictable, once the statis-
tics that characterize a set of typical tasks
are known, it is possible to use those sta-
tistics to make reasonably accurate esti-
mates about the effort required to handle
the normal workload associated with
many unpredictable tasks. This allows a team
to allocate the right number of resources
to meets its commitments and bring a
sense of control and predictability into an
apparently chaotic project.u

References
1. Humphrey, Watts. Coaching Develop-

ment Teams. Addison-Wesley (in press
to be published in 2005 or 2006).

Notes
1. TSPf is still in the prototype stage, but

the SEI authorized piloting its use with
this team.

2. Our experience has been that there
comes a point in every successful
launch where the team members get
physically involved in the meetings.
They sit up straighter in their chairs,
leaning forward to hear better, or stand
up and move chairs from the back of
the room to the front so that they can
see better or come forward to write on
the white board.

3. The histogram shows the number of
data samples falling into each of the
duration bins indicated on the x-axis
(bar chart) and the cumulative number
of data samples with duration less
than the x-axis value (curve). For
example, there are 83 anomaly investi-
gation tasks with duration between
three and 111 minutes and approxi-
mately 65 percent of the data points
have a duration less than 111 minutes.

Figure 1: Anomaly Investigation Effort Histogram

Actual Time Est. Time (Launch) Est. Time (S/M/L)

Minutes 2,549 4,301 3,313

% Error - 41% - 23%

Table 3: Comparisons of Estimates

About the Authors

Ellen George is a princi-
pal with PS&J Software
Six Sigma and is active in
training and consulting
on the application of
software process and

project management. She has over 20
years of experience in software develop-
ment, process improvement, and project
management. George is a Software
Engineering Institute authorized Per-
sonal Software ProcessSM instructor and
Team Software ProcessSM launch coach.
She has a Master of Science in comput-
er science and a master’s degree in tech-
nology management from the Stevens
Institute of Technology.

PS&J Software Six Sigma
P.O. Box 463
Palisades Park, NJ 07650
Phone: (201) 358-8828
E-mail: ellengeorge@

softwaresixsigma.com

Steve Janiszewski, Ph.D.,
consults on project man-
agement, Capability Ma-
turity Model® Integration,
software metrics, Personal
Software ProcessSM, Team

Software ProcessSM, and Six Sigma for soft-
ware development for PS&J Software Six
Sigma. He has 30 years of experience in all
phases of software development, manage-
ment, and process improvement. Prior to
joining PS&J, Janiszewski was director of
Honeywell’s corporate Software Six Sigma
organization, providing process assess-
ments, training, and consulting to more
than 100 locations around the world. He
has a Master of Science and doctorate in
theoretical physics from New York
University.

PS&J Software Six Sigma
P.O. Box 463
Palisades Park, NJ 07650
Phone: (201) 947-0150
E-mail: stevejaniszewski@

softwaresixsigma.com

